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ABSTRACT

The nonlinear interaction between planar or near-planar ToUmien-Schlichting waves and

longitudinal vortices, induced or input, is considered theoretically for channel flows at high

Reynolds numbers. Several kinds of nonlinear interaction, dependent on the input amplitudes

and wavenumbers or on previously occurring interactions, are found and are inter-related.

The first, Type a, is studied the most here and it usually produces spanwise focusing of both

the wave and the vortex motion, within a finite scaled time, along with enhancement of both

their amplitudes. This then points to the nonlinear interaction Type b where new interactive

effects come into force to drive the wave and the vortex nonlinearly. Types c,d correspond

to still higher amplitudes, with c being related to b, while d is connected with a larger-scale

interaction e studied in an allied paper. Both c,d are subsets of the full three-dimensional

triple-deck-lie interaction, f. The strongest nonlinear interactions are those of d,e,f since they

alter the mean-flow profile substantially, i.e., by an 0(1) relative amount. All the types of

nonlinear interaction however can result in the formation of focussed responses in the sense

of spanwise concentrations and/or amplifications of vorticity and wave amplitude.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-18605 while the first and second author was in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. INTRODUCTION

A fairly common feature in experiments and large-scale computations on channel-flow

transition, as well as boundary-layer transition, with or without wall curvature, is the ap-

pearance quite early on of significant streamwise streaks following the spanwise concentration

of streamwise vorticity. These streaks are possibly associated with the creation of Lambda

vortices. Channel-flow experiments are described by Nishioka et al. (1975, 1980, 1985),

Kozlov and Ramazanov (1982, 1983, 1984), Ramazanov (1985), among others, and related

computations are by Kleiser et al. (1982, 1985), Orszag et al. (1980, 1983), Biringen et

al. (1984), Zhou and Wang (1984), Zang and Hussaini (1985), Gilbert and Kleiser (1986),

Singer et al. (1986), among others, under various disturbance conditions. It appears how-

ever that no rational or other theory has been put forward yet to account for the focusing

of streamwise vorticity and the eventual formation of streaks. The present theoretical work

is aimed at providing such an account, as well as enlarging the understanding of Tollmien-

Schlichting/longitudinal-vortex interaction.

The theory is for an incompressible fluid in unsteady three-dimensional (3D) motion at

high Reynolds numbers, starting with an initial input which is a near-2D Tollmien-Schlichting

(TS) wave. A slight 3D "warping" present in the TS wave provokes a slight vortex motion as

part of the mean-flow correction. This then poses a number of physical and theoretical ques-

tions. The first question to be addressed is how nonlinear interaction can take place between

the evolution of the TS wave and that of the induced vortex flow, i.e., what structures are

involved? The second question concerns whether the interaction is self-sustaining or instead

peters out, and, third, how dependent is it on the initial input? Fourth, can theory predict

the change of scale and spanwise focusing that seem central for the eventual description of

streak formation?

These questions are considered in the following sections. In sections 2,3 it is found that

the first occurrence (labelled Type a), or one of the first kinds, of such nonlinear interaction

can arise for rather tiny amplitudes of the input TS wave 3 This tinyness is due essentially

to the quite wide difference in the typical time scales for the viscous-inviscid TS wave and

the induced vortex, which is initially viscous-controlled. The scales are derived from an

order-of-magnitude argument in section 2, although they could be deduced instead from

adaptation of the reasoning in Hall and Smith (1984, 1987). Next, the interaction turns out

to be self-sustaining (section 4) in the sense that the slight warping of the 2DTS wave forces

a very fast growth of the vortex motion which in turn reinforces the warping, and so on. At

first this occurs in a form of linear secondary 3D instability which is different as a rule from

3Specifically, the TS streamwise velocity perturbation involved is of order Re -4/7, suggesting a threshold
of about 1% at Reynolds numbers Re in the range 1000-5000.



the suggested destabilization of Squire modes in that the secondary instability is found to be

much more violent than previously suggested (although the subsequent interactions below do

re-establish the importance of Squire-mode destabilization). After that, nonlinearity soon

takes control and the indications, again from section 4, are that the nonlinear TS-vortex

interaction terminates within a finite scaled time with the formation of concentrated zones

or tongues of enhanced streamwise vorticity and TS amplitude (as well as phase variation),

at particular spanwise locations. These vorticity tongues are felt to presage the initial de-

velopment of a typical streak. A change of scale therefore takes place then, bringing in new

physical properties associated with higher amplitudes inside the tongue, and this defines a

second Type b of nonlinear interaction, as discussed in section 5. Further Types c,d,e are

identified in section 6, along with the connections between the Types a-e. Throughout, the

nonlinear behavior exhibits a sensitive dependence on the initial conditions; moreover, less

civilized transitions than the experimental, computational and theoretical ones concerned

above can by-pass any of the present regimes and enter later, higher-amplitude, stages di-

rectly. Further comments on these and other aspects are presented in section 7.

The velocities u, v, w and the corresponding cartesian coordinates x,y, z are based on

nondimensionalization with respect to UD, one-quarter of the maximum speed of the undis-

turbed plane Poiseuille flow, and to the channel width aD, respectively. The undisturbed

flow has u = _(y) __ y - y_ (with v, w zero) between the walls y = 0, 1, properties at which

are denoted by superscripts 7= in turn. The pressure is written pD, U2Dp and the Reynolds

number is Re = UDaD/VD, where PD, Vo are the density and kinematic viscosity of the fluid.

Time is written ant/uD, and the subscripts r, i stand respectively for the real and imaginary

parts of a quantity. The theory is concentrated nominally near the lower branch of the neu-

tral curve for large Re: it happens that the Reynolds numbers of concern in the transition

experiments are also large, and previous theoretical studies indicate that the present kind of

approach can have application at relatively low, even subcritical, Reynolds numbers.

2. THE SCALES, AND THE CORE FLOW, FOR TYPE A INTERACTIONS

Only slight warping of a 2D TS wave in the incoming 2D plane Poiseuille flow is necessary

to provoke a nonlinear interaction between the wave and the longitudinal vortices created

by the warping. The scales involved arrange themselves as follows for the first, Type a,

interaction to be considered here: see also Figure 1. First of all, the typical time or length

scales of the primary TS wave and a longitudinal vortex are very different, the time scales

being 0(_ -3) and 0(¢ -z) in turn, where ¢ - Re -1/7 is small. The former size comes straight

from properties of the Orr-Sommerfeld equation at large Re and helps fix the thin viscous

critical-layer/wall-layer width, while the induced longitudinal vortex in the core responds
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initially at least with an unsteady-viscous force balance, so that 0t "_ Re -1. This relative

discrepancy of order ¢4 in the time scales or ¢6 in the lengths implies that a crucial amplitude

of the 2D TS wave is of order c 3, in relative terms, since the critical nonlinear interplay

is expected to be due to amplitude-squared inertial effects acting on the x-scale 0(¢ -a)

characteristic of a 2D TS wave, and that determines the TS disturbance amplitude in the

core (0 < y < 1) and the wall layers (y _ 0, 1) examined below. A similar reasoning based on

physical balances also points to the slow z-scale of interest, namely z ,_ ¢-3, for the spanwise

warping in the TS wave to be significant, as opposed to the main x-scale of 0(¢ -1). Likewise,

the induced vortex amplitude follows as 0(¢ 4, in the velocity u, because of its production

by means of amplitude-squared effects from the TS disturbance, in the core of the flow. So

multiple scaling is called for, in the form

Ox --" COX, Oz _ ¢30Z, Ot ""+ ¢30T "4- ¢70-'- T (2.1)

where x = ¢-1X, z = ¢-3Z, t = ¢-3T, t = ¢-_T, and so on, along with the core- and

wall-layer expansions set out just below and in the next section. A noteworthy feature in

both cases is the fairly tiny size, in both the TS and the vortex disturbances, at which

nonlinear interaction first enters; this tinyness seems to stem originally from their disparity

in characteristic time scales and it seems to tie in with some experimental observations.

In the core of the undisturbed motion, the flow solutions for the velocity and pressure

take the form

U : _(y) "_- ¢4U(3) -J- ¢5U(1) "4- ¢Tu(e) + ... -[- C9U (]) "[- ... (2.2a)

v = ¢6v(1) + cSv(e) + ... + ¢l°v(f) + ... + ¢11v(3) + ... (2.2b)

w = cSw(3) + ¢9w(1) + ¢11w(e) + ... + ¢13w(1) + ... (2.2c)

p = _ko¢6X + crp(a} + ¢9p(,} + ... + ¢11p(I} A- ¢12p(3} + ... (2.2d)

where the superscript (3) refers to the induced vortex flow which is dependent on T, Z, y but

independent of the fast scales X, T, while (1) refers to the nonlinear TS wave (dependent

on X, T,T, Z, y) and (e), (f) denote higher-order TS effects. Also, the constant ko : 2 from

the basic flow. Substitution of (2.1), (2.2) into the continuity and Navier-Stokes equations

then leads to the following successive balances controlling the TS wave and the longitudinal

vortex in the core.

The TS wave at leading order satisfies, for continuity and the x-, y-, z- momentum

balances in turn,

Ux(1) + vu(1) = O, _UxO) + v0)u ' = 0, (2.3a, b)

_Vx(l) = -Pu( 1_, _Wxo) = -Pz('), (2.3c, d)



where the prime denotes d/dy. The solution here is neutral at this level of working, so that

{uO),v(1),w(1),p (1)} = {A_',-iaAg, ib(1), tb0)}E + c.c. (2.4)

where fi(1), 6)(1) are independent of X, T, the function A is independent of X, y, T and repre-

sents a negative displacement effect,

E - exp[i(aX- nT)] (2.5)

with the wavenumber a and the frequency f_ both being real, and (2.3a-c) are satisfied

provided that
Y--2

riO) - [)(1)- _ an fo u dy, _v(1) = -fiz(,)/io_. (2.6a, b)

Here fiO)-(X, T,-T, Z,...) represents the lower-wall pressure, and the scaled pressure differ-

ence between the walls,

fi(1)+_ riO)- = _a2AI [where I = 1/30], (2.7)

is due to the curvature in the disturbed core flow and is a vital part of the nearly 2D TS

wave. Also, "c.c." denotes the complex conjugate of the preceding expression.

Next, the TS corrections u("),.., are governed by

UX(e ) "-_ ?)de) : O, UTO ) -_- _Ux(e ) "JF v(e)_ _-- -px(l), (2.8a, b)

v_,) + _Vx(o) = -py(o), w_1) + _Wx(o) = -Pz(,), (2.8c, d)

thus bringing in the unsteadiness and streamwise pressure gradient of the TS wave. A

decomposition as in (2.4),

{ u (_), v (_), w (e) , p(_)} = {fi(_), _3(_),_(_), i5(_) }e + c.c. (2.9)

therefore gives the results

it(e) = A(e)_ _ _ / fi(1)_-2dy _ fi(1)/_, (2.10a)

_(_) = ia_ f fi(l)_-=dy + i_A- iaA(_)_, (2.10b)

fi_(o) = 2a_A_ + a2_:{-A (_) +/fi(1)_-2dy} (2.10c)

where -A (_) is an extra displacement effect.

Then the extra TS contributions u(]),.., are the first ones to feel the influence of the

unknown induced vortex flow [u(3),...] directly, through the governing equations

UX(I) "_- _)y(l) -'_ O, UT(¢ ) -)- _Ux(I) + U(3)Ux(1) "Jr- V(f)_ -[- V(1)Uy(a) _ --PX(e) (2.11a, b)



VT(¢) "_ UVx(I) -'}-U(3)VX(a) ---- --Py(Y), WT(e) "_ -UWx(]) + U(3)WxO) -_ V(1)W(3) ---- --PZ(I) (2.11c, d)

and the nonlinear inertial interaction between (1) and (3) terms. We note that any terms

between u (_), u (]) in (2.2a) and so on do not affect the present vortex/TS interaction. With

the decomposition u (f) = fi(f)E + c.c., etc., as in (2.4), (2.9), the solution here gives

_(]) = -io_{A(f)_ + Au (3) + AF(f)(y)}, (2.12a)

i5(f) =/5(f)- _ c_2{A(/)_f_2dy + 2A _oU_u3dy} + A"/(f}(y) (2.12b)

where the functions F (f),'_(f) are standard functions in the linear-stability expansion for a

purely 2D TS wave and need not concern us here, -A (I} is the displacement correction at

this level and /5(f)- gives the corresponding lower-wall pressure contribution. Hence the

small pressure difference induced across the channel at this order is given by

/5(])+ _ p(f)- = _a2{_,(/)i + 2A J} + AK (2.13)

were g - f3 _u(3)dy and K -- f_ 7(f)dy. The result (2.13), as expected, is a slight distortion

of the earlier pressure jump (2.7), due most significantly to the distortion from the vortex

motion.

Lastly here, the longitudinal-vortex flow u (3), etc., is controlled on the slower time scale

by the equations

vu(3) + Wz(3) = 0, (2.14a)

U_(3)+ < U(1)Ux(1) + Y(1)Uy(l) > +V(3)_ t = Uyy(3), (2.14b)

< u(1)Vx(1)+ v(1)v_ 1) > +Go_u (a) = -p_(3), (2.14c)

w_-)+ < u(1)wx(1) + v(1)w_(1) >= -Pz(3) + wyy(3). (2.14d)

Here <> refers to the E ° component of the enclosed nonlinear terms. Other components

(x E, E _ (+ c.c.) are also produced but these do not influence the dynamics substantially.

Again, Go is a scaled Gortler number whose effects could be included in the subsequent

analysis although henceforth we take the case of zero Go to focus on flat- surface transition.

So elimination of p(3) and manipulation of (2.14) lead to the governing equations

- (z) = 4.=-a  'Oz{IAlOzlAI} (2.15a)

(0_ - 0TT)U(3) = _'v (3) (2.15b)

of the longitudinal vortex motion in the core, subject to the boundary conditions

u (3)=v (3)=0yv (3)=0at y=0,1 (2.15c)



for no slip at the channel walls, in view of (2.14a). There is an implicit assumption here that

the induced vortices have little wall-layer structure/modification, and this is borne out by

the balances acting in the wall layer as described next.

3. THE WALL LAYERS IN TYPE A INTERACTIONS

Viscous wall layers which are in effect critical layers are required near y = 0, 1 to reduce

the TS flow, e.g., in (2.4), to rest at the walls. The previous scalings in the core suggest the

expansions

U _- E'2A0 -1- ¢4_92 -It- _5U(1) -_- _6U(3) -4- e7U (e) -4- ... -_ ¢9u(f) --_ ..., (3.1a)

v = eSv (i) + el°V (_) + ... + ex2V (J) + ... + elSV TM + ... (3.1b)

w = ¢7W(1) + ¢9W(e) + el°w(3) + ... + e11W (y) + ... (3.1c)

p = _koe6X + eTp(i) + egp(_) + ... + ¢np(y) + e12p(Z) + ... (3.1d)

in the lower wall layer near y = 0, where y = e29 with 9 of 0(1), and similarly in the viscous

upper wall layer of width 0(e 2) adjoining g = 1. Here A = 1, # = -1 from the basic flow,

while U (x), U (_), U (I) are the induced TS contributions and U TM= A3-9 is the induced-vortex

streamwise shear flow from the core motion, so that A3- = A3-(T, Z) -= 0uu TM at y = 0+.

The vortex velocity components V (3), W TM are less simple, being forced by TS-amplitude-

squared effects in the wall layer, as in Hall and Smith (1987), although they match with the

behavior cx 92, 9 (plus logarithmic behavior) respectively at large 9 required by the core-flow

results. Further, the 9-variation in all the pressure terms shown is found to be negligible

here, leaving p(1) = /5(1)-E+ c.c., etc., independent of 9. As before, the terms between

the (e),(f) contributions in (3.1a) and so on, including second harmonics cx E 2, have no

significant impact on the vortex/TS interaction.

The governing equations for U (a), for W (1) and for U (f) are basically the only ones required

now. The first are unsteady, viscous, quasi-2D ones of a TS wave,

UX(I ) -}- V_(,) = 0, UT(I ) -4- AgUx(1) -4- V(1)A = -Px(') + UO¢,) (3.2a,b)

subject to

U (')= V (')= 0 at 9 = 0, U (')_ AA as 9 --*_, (3.2c)

for no slipand for matching with the core solution.Hence U (')= /)O)E+ c.c.,etc.,where

from (3.2a-c)we have, with Ai denoting the Airy function,

f]¢(,)= BAi(_), BAi' o = i_/5(')A-]

AA = ic_P(')&-] ,c/Ai'o,

(3.3a)



where_ = A:(y - Q/Aa),

and t¢ = f_o Ai(q)dq. The corresponding upper wall yields the relation

A = ._ia, the subscript zero denotes evaluation at _ = _0 =

-,kA = iap(a)+A -_3 tc/Ai'o,

with W (1) = 0 at 9 = 0 and W (i) _ 0 as _) _ c¢. So W O) = I/]/O)E+ c.c.

given by

(3.3b)

on the other hand, due to the opposing displacement effect there, and so coupling (3.3a,b)

with the core property (2.7) we obtain the dominant eigenrelation

A_tca2I = 2X2Ai'o (3.3c)

fixing a, Ft as both real. Computation gives the values a _ (1.00)(2/1)9, fl _ (2.298)a_.

Next, the relatively small spanwise velocity induced, W (1), satisfies

(3.4)

where 1_ (1) is

(3.5)

and the function L(_) is defined by L"-_L = 1, L0 = L(oo) = 0, and is expressible in terms

of integrals involving the Airy function.

The extra TS contribution U (f) is then forced mainly by the slow variation of the primary

TS wave, both spanwise in Z and temporally in T, and by the additional shear from the

induced vortex motion. Other contributions are present from the correction U (e), V (e) in the

TS wave but they are less significant. Thus the controlling equations are

Ux(, ) + V(I) + Wz(,) = 0, (3.6a)

UT(I ) "_ U(-_1) -3v ,_yUx(l) -3v _y2Ux(e) -Jv U(3)Ux(,) --_ V(1)Ux(,) -Jv V(I)u_ 3)

= //(s) (3.6b)+2V(¢)#_ + V(f)A _p(l) + -_,_ ,

subject to the constraints

U (I) = V (I) = 0 at _) = 0, U (I) --* )_A (t) +/_3-A + F(/)'(0)A as 9 --+ _. (3.6c)

The influences of the slow variation and the vortex shear, here and in the upper wall layer,

must therefore satisfy a compatibility relation. This can be worked out by solving the system

(3.6a-c) for its E-components, then conducting a similar analysis on the forced contribution

in the upper viscous layer, and relating the two via the cross-channel jump condition (2.13)

7



on the induced wall pressures.After somemanipulation, and using the earlier solutions, we
obtain the amplitude equation

2(Aio/a)(_o + A,o/a)A_A T -2a4A-}JA + 2)_ (Azo/At_)Azz + _r_A

(3.7)
.t 2 . ,t

-(Az0/t_)()_3+ A- )_3-)i_[1 -- 5{_o_(Azo/Azo)- 1 + _oAio/,_}]A

governing the effect of the induced vortex motion (through the terms J, A3_) on the TS

amplitude A(T, Z). In (3.7) the constant 7rx is the standard linear-stability contribution for

a 2D TS wave, determining whether the flow is sub- or super-critical, while the unknown

integral property J(T, Z) and induced shears _3_(T, Z) are given by

/o'J - _u(Z)dy, -_3- ---- (_yU(3)( _, Z, 0), )_3+ ---- -(_yu(3)(T, Z, 1). (3.8)

The equation (3.7) can also be checked against an appropriate expansion of the eigenrelation

(3.3c), in fact.

In summary, then, the nonlinear interaction between the warped 2D TS disturbance and

the longitudinal vortex motion is controlled by the partial/ordinary differential-cum-integral

system consisting of (2.15a-c), (3.7) along with the definitions of g,)_3_ in (3.8).

4. NONLINEAR TYPE A SOLUTION PROPERTIES; SPECIAL CASES; SEC-

ONDARY 3D INSTABILITY; FORMATION OF FOCUSSING

The system governing the nonlinear interaction may be written in the form:

(0_ - O_T)O_v(3) = 2_ _'02zp, (4.1a)

(0 2 -- _)U (3) = _'4V(3), (4.1b)

subject to

and

U TM = V TM = OyY (3) = 0 at y = O, 1 (4.1c)

O_TA : [Cl "3t- c2g -Jr- c3()k3 + + .,,_3)]A -Jr c402zA, (4.1d)

- fo'J(T,Z) = gu(a)dy; ._(-T,Z) = TOuu(3) at y = 1,0; p = IAI2. (4.1e)

^ --

Here A(T, Z) = o_A, while the constants c2, Ca, c4 follow from a computation for the coeffi-

cients in (3.7) as

c2 = 131.5 - 175.2i, c3 = -1.826 - 0.0348i, c4 = -0.0655 + 0.0873i (4.2)



and the constant cl(cx _rl) has positive or negative real part depending on whether the basic

flow g = y(1 - y) is super- or sub-critical. As might be expected, there are many features

in common between the nonlinear system (4.1) and Hall and Smith's (1987), we note, an

exception being the term cx c4 in (4.1d) which turns out to have a substantial impact. Again,

there is also a connection with Bennett, et al.'s (1988), Hall and Smith's (1989), and Smith's

(1988b) work on high-amplitude vortex effects when extreme Z-variations are considered.

The main solution properties of interest are discussed in (a) - (g) below.

(a) First, for an incident TS wave that is only relatively slightly warped we have IOz]

being small, say Oz = dO2 with a small and ,Z typically 0(1). Initially then, for example,

the vortex flow induced is small, 0(a2), and so ,4 grows as an undistorted TS wave like

exp(clT) times an arbitrary function of Z, if ca > 0, and the interaction is weakened. The

0(a 2) vortex motion then amplifies like exp(2clT), however, being forced by the pzz term

in (4.1a), and this drives a corresponding exp(3cl_) growth in the 0(a 2) correction of the

TS wave, via the interaction through J,,_ in (4.1d). Hence a fuller interaction comes back

into play at increased times T of order -gna, at which stage I/il is larger, of order a -1, but

the vortex amplitude is also increased, to 0(1). Since the time variation remains typically
^

0(1) the full interactive system (4.1a-e) is retrieved at that stage except that the c4Azz

term in (4.1d) is absent due to the slower Z-variation here. This less-warped case therefore

forms a connection with Hall and Smith's (1987), and indeed it is found (see also the later

computations and Figure 6) that the interactive system with c4 in (4.2) replaced by zero

yields nonlinear exponential growth of the TS and vortex amplitudes as T increases, in line

with the findings of the last-named paper. Specifically, we have here

[v (3), u TM,p, arg ,41 ,_ e"_ _, u, fi, ¢] +..., as T _ oc, (4.3a)

and the nonlinear growth factor s is determined by the reduced problem obtained from

substitution into (4.1) with c4 zero, namely

502 - (4.3b)

C2r 1

-- S -----_fLY,

_--7= _ = O_v = 0 at y = O, 1,

+ { z) - z) } = o.

(4.3c)

(4.3d)

(4.3e)

Here (4.3e) follows from the dominant terms of order exp(3sT/2) that appear in (4.1d)

when (4.3a) holds. The profile _(Z) remains arbitrary, although we observe that (4.3a-e)

9



represents an exact solution of (4.1) when Cl = c, = 0, in which event _(Z) is fixed by the

initial distribution. The eigenvalue s is one of those determined by Hall and Smith (1987).

(b) Next, suppose that ¢1 is small, corresponding to a state which is closer to neutral

than the above, e.g., if el is positive this occurs at a lower Reynolds number, for a prescribed

wavenumber. Then the less-warped case initially has

where _ _ _ + a20_ and

A = a0(_,2) + _2Aa(T,_,2) + ...

-AI_ + ao$ = [ill + c2J + c3(_ + + _3)]ao + C4ao22

from (4.1d), whereas (4.1a,b)lead to

(o_- _)o_ TM= 2__'po_, (o_- _)_(3) = _,¢_).

Here

(4.4a)

(4.45)

(4.4c, d)

[u(3), v(3), j, A3] = a2[_(3), _(3), j, _3], (4.4e)

cl = a2cl, and po = ]ao[ 2. Apart from transients, the correction term A 1 grows exponentially

with time [or a0 does] and so at a later stage we have effectively the ordering

fl = O(1 ), Oz = a02, i_T = a: 0i, , (4.5)

along with (4.4e). Thus the governing equations now reduce to

0_5 (3) = 2_ K'P22, 0_fi TM = _'5 TM, (4.6a, b)

A S = [C1 "Jl- c%Y "71- C3(_ t + _3)]A JI- c4A22, (4.6e)

since the time scale is relatively slow here. The boundary conditions on (4.6a,b) are that

5(3), _(3), 0u9(3) vanish at y = 0, 1 and the solution is straightforward, giving

5TM = {2yr- 7y 6 + 7y 5 - 3y 3 + y2}/420, (4.7a)

fi( 3) = {-y'°/45 + y9/9 - 3yS/16 + y7/12 + y6/10

(4.7b)

-y5/8 + y4/24 - 1/720}/210

explicitly; hence the vortex properties J, _3 can be evaluated and substituted into (4.6c).

The resulting complex amplitude equation for A(T, Z) is then

A_ = [_'1 "it- blp221A + caA22, (4.8a)
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where

p = I,'t] 2 (4.8b)

b, = (-0.486 + 3.905i)10 -s. (4.9)

We address this simplified nonlinear version, (4.8a,b), now because to some extent it mirrors

the main properties of the full system (4.1). It is vaguely like certain well-studied equations

such as the cubic Schrodinger equation, incidentally, although in general no firmer connection

seems available.

One particular solution is simply that for 2D flow of course where .4 = Ao(]') is inde-

pendent of 2, and there (4.8a) yields the exponential form A0 = exp(_lT) in line with the

definition of _1. To examine the stability of this 2D solution to small 3D distortions we

use the polar form /] = rexp(iO) with (r,O) (T,Z) real, convert (4.8) to two real coupled

nonlinear equations for r,0,

(4.10a)

= (<, + b,,p2e) + c4,( 2 - +

and then expand, with 5 small,

(4.lOb)

(r,0) = {_06.5'rT, 00 + (_I/T} -_ _(rl, _1) --{- 0((52). (4.11a)

The expression in curly brackets is the 2D solution, with 70(> 0), 00 prescribed constants,

and of course p = Po + 5p_ + 0(52) where P0 = "/02exp(2gzlrT),pl = 2"yor_ exp(gzarT_). The

linearized system resulting from substitution of (4.11a) into (4.10) yields solutions

(rl, (_1) (X exp(i_Z)exp(QT) (4.11b)

for small g:l_ or, at large times, for _1_ negative, and a similar result holds for g:l_ positive. Here

/} is the particular spanwise wavenumber of the aD distortion and the effective growth-rate

O is found to be given by

0 Clr /_2(blrjO 0 + C4r ) -Je _ 2 2 "2- ~ 7_2 2,½= - -- {blrPo_ --4blrpoc.lr - 2t32blipoc4i - p c4i I • (4.11c)

The dependence of Q_ on/3 and the 2D wave amplitude p0 is presented in Figure 2. Several

points emerge here but the main ones are the following. First, the secondary 3D instability

is very pronounced, especially for increased/_ and/or p0 where max Q_ increases like _2p0

approximately. Thus both the effects of three-dimensionality and of 2D amplitude growth

act in concert to destabilize, accentuating the secondary distortion or warping. The next

point is that the secondary 3D instability here is quite different as a rule from Herbert's

11



(1984) suggested form and is associated more with the 3D growth-rate behavior at large

Reynolds numbers, through the c4r term above, than with the induced-vortex/Squire-mode

response through blpo, c.f. Section 6 below. The latter effect dominates only if c4 is negligible

as in item (a) earlier corresponding to reduced three-dimensionality in the initial input, this

giving a loose connection with Squire-mode destabilization. Although there is therefore some

dependence on the initial conditions of course, in general the enhancement of any warping is

due mainly to the c4_ contribution. Third, this can occur even while the flow is subcritical.

Fourth, the increase in temporal growth rate with increasing/_ is so fast that for an initial-

value problem in general, where (4.11b) is replaced by a spectral decomposition in Z for

instance and in effect integration with respect to/3 becomes appropriate, the 3D distortion

becomes singular within a finite time. This is similar to the break-up phenomenon associated

with the backward heat-conduction equation. In the present case the break-up takes place

with a time scale oc Q-1 or/)-2, typically, i.e., focusing occurs with t2- Zsl cx (Ts- iF)½ at

a finite time Ts and location Zs. The local behavior there is given by a similarity form which

is analogous to that in (4.13) below and is somewhat dependent on the initial conditions. If

these or the boundary conditions are unrestricted then the linearized initial-value problem

can become ill-posed in the sense that effectively Ts tends to zero. This cumulative instability

for large wavenumbers/_ and/or large amplitudes P0 is due in the present regime to blr,C4r

being negative but it permeates the analysis and computations in the other regimes studied

as well.

Another simple particular solution should also be mentioned, namely the single mode

A = A0(i_)exp(i_2) with ¢_ fixed, giving an extension of the previous one and yielding to

similar analysis. Here in addition p = Ifi,012 = p(T) and so fi,0(_O) satisfies the linear equation

A'0= - c4 2)A0. (4.12)

This further illustrates the strong instability possible since, as C4r is negative, the solution

o( exp((_l - c4/32)T) grows exponentially for (-c4,)/32 + ghr positive and the growth rate

increases indefinitely with increasing spanwise wavenumber /3. Limit-cycle solutions may

also be sought but they are probably, although not necessarily, irrelevant in view of the more

general behavior proposed next.

The aspects above suggest that the most common response of the system (4.8a,b) is likely

to be a nonlinear break-up within a finite time, T1 say. The orders of magnitude involved

indicate that as 2_ --* T1- the singular behavior has

c7-__ fi(r/) , p_, ,c-A4/5(r/)and r/= Ic.l (2- 21)1( , - (4.13a- c)
01 Ol
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focussed around the position 2 = Z1. There, from (4.8a,b), the functions 5(7/), _(r/) satisfy

1 ~,

_r/a = _"5exp(i¢l) + 5"exp(i¢2), _ = lal2, (4.14a, b)

subject to 5,,5 being bounded at large ]r/I , to match with the flow away from 2 ,,_ 21, and

with ¢1 = arg(bl), ¢2 = arg(c4) so that _r/2 < ¢1,2 < _r. The localized behavior here produces

a shock-like jump from 5(-00) = 50 to 5(00) = ill, i.e., at 2 = 214-. For example, if the

jump is small then (4.14a,b) yield the result

_5- fi0 = exp(-Nr/_)dr/ (4.15a)
oo

where

N [--(p0_:l-Jr-C2)Cl _ {(p0Cl 2 --$1,_2) 2 - i22} ½]

/[4gh {1 + 2/_0 COS(¢1 -- ¢2)}]

(4.15b)

and _,_ _= cos ¢,_ < 0, ._,_ --- sin ¢,_ > 0, n = 1,2. As each root N has positive real part the

solution (4.15a) is acceptable and the proposed jump behavior is obtained from 7] = -oo to

r/ = +o¢. As regards other acceptable forms, numerical solutions of (4.14a,b) for a range

of jump conditions were derived by use of a finite-difference procedure and these are shown

in Figure 3. They agree well with (4.15) for small jumps. The description (4.13) - (4.14)

of a local nonlinear break-up also gains weight from the fact that, at least for zero cl, it

provides an exact similarity solution of the system (4.8a,b). The occurrence of the break-up

here provides the means for the less-warped interaction to focus and acquire the full form

(4.1a-e), leading on to the subsequent response studied in (f), (g) below.

(c) The single-mode solution mentioned in (b) above may be extended to the full nonlinear

system (4.1a-e), since if ft. = Ao(T)exp(iflZ) then /10 is governed by (4.12) again provided

_71is replaced by cl. So the comments immediately following (4.12) apply also to the general

case.

(d) Likewise, secondary 3D instability can be established for the full system by extension

of the approach in (4.10) - (4.11). For the full system (4.1) we use polars in the form

/i = Rexp(i¢) to replace (4.1d) by the two real equations

[Clr-t-C2rDr"3t-C3r( +3Jr )]R -Jr-C4r[RZZ-- ]7 ¢2Z1
(4.16a)

[qi + c2,J + c3i( )_ +3 -4- )t3)]n + ¢4i[l_zz - n¢2z]

+c4r(R2¢z)z/R

(4.16b)
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with p = R 2 now, and then the secondary 3D instability of the 2D TS solution R =

F0 exp(clTT), ¢ = ¢0 + cliT [where P0, ¢o are constants, F0 > 0] is examined by perturbing

it, for small 6,

(R, ¢) = {F0 exp(clTT), ¢0 + c,iT} + 6(R,, ¢1) + 0(6_),

(4.17a)

(U(3), ?3(3)) = 6(l/_3), U_3)) "4- 0(62)-

The resulting linearized system for R1, ¢1 is found to yield both fast growth in the form

R1 _ exp[7 exp(2cl_T/3)] (3' = constant) (4.17 b)

at large times, as might be expected, and fast growth for increasing spanwise wavenumbers

/_. The latter growth is analogous to that in item (b) above, causing a finite-time breakdown

of the small 3D distortion in (4.17a) for an initial-value problem and making the subsequent

computational work very sensitive.

(e) An extreme case of interest opposite to those in (a), (b) arises for relatively large

amplitudes and short spanwise lengths IZ[, such that Z is 0(F) say with F << 1. Then if

[AI is 0(r-2), p is 0(F -4) and the balances in (4.1a-e) suggest that typically the time scale

is fast, 0(F2), with v (a) ,,- F -4 and u TM _ F -2 --_ Aa_ ,,, J all being large in magnitude. This

has the effect of rendering the core flow of (4.1a,b) inviscid, apart from two wall layers of

width 0(r) in y, which influence the values of _a_, and of replacing cl in (4.1d) by zero. The

resulting simplified system then ties in closely with the analysis in (g) below.

(f) Computational studies of the full nonlinear system (4.1a-e) (with (4.2)) have been

made, applying both spectral and finite-difference approaches, for various starting conditions

imposed at time T = 0 and for various values of the constant q. IN the spectral treatment

Fourier series in Z of period L were substituted into (4.1a-e) to yield a set of coupled

nonlinear equations in y,T for the Fourier components. The set was truncated at a large

number (M) of terms and marched forward in time steps AT with a predictor-corrector

method of second-order accuracy in y,T, for grid sizes Ay in y. A range of values for the

parameters L, M, AT, Ay was also examined, and Figure 4 shows a typical result. Similarly,

Figure 5 presents a typical computation from the finite-difference procedure, where time-

stepping was applied as before but central differences were taken in both y and Z (step

size AZ). The results from both methods tend to confirm the analytical features that we

have described previously, with the properties of shortest spanwise scale growing the fastest

temporally. This leads on to the account in (g) below.

The reduced system implied in (a) above, i.e., (4.1a-e), (4.2) but with c4 replaced by

zero, has also been studied computationally and a representative result is given in Figure 6,
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obtained from the spectral approach.The secondary3D instability analogousto (4.11a-c)is

much reducednow and the cascadeof energy into higher spanwisecomponentsmentioned

in the last paragraph is not observed; instead the nonlinear amplitude growth computed
appears to be consistent with the description in (a) above, that is, the TS wave and the

vortex flow amplify together exponentially.

(g) The terminal behavior of the full system (4.1a-e), (4.2) is considered now. Many types

of algebraic or exponential nonlinear breakdown suggest themselves and have been tried by

us, 4 and the same goes for additional special cases, but the favorite description, guided by

the features (a)- (f) above, is as follows.

We propose that the nonlinear interaction breaks up by producing a concentrated "tongue"

formation within a finite time T = T_: see Figure 7. The orders of magnitude suggest then

the singular behavior

R = lei.I--, (T_- T)-'/)(S), p,,_ (T_ - T)-2/5(5), (4.18a, b)

u (a) ,-_ (T_ - T)-_fi(y, _), v TM ,,_ (T_ - T)-2_(_,5), (4.18c, d)

¢ ,-, Ggn(T, - T) + (_(,_) (4.18e)

to leading order as T --+ T,-, with the dependence on y, £ as shown, and with the tongue
-- -- 1

being focussed within a distance 0(T, - T)_ of the spanwise location Z = Z, say, so that

Z - Z, = (r, - r)½_ (4.18f)

where 5 is 0(1). The algebraic break-up (4.18a-f) can be generalized readily, but the par-

ticular scales shown above appear to be the favored ones: c.f. (4.13). Also here, the vortex

response (4.18c,d) applies in the bulk (i) (0 < Y < 1) of the flow, where the vortex becomes

mainly inviscid, whereas new viscous wall layers (ii) of width e( (T_ - T)_ come into play

near Y = 0, 1 in which u (3), v TM reduce in magnitude to the levels (T, - T)-½, (T, - T)-}

in turn. The vortex skin-friction contributions t_ are determined by the properties in those

wall layers (ii) but the vortex's coanda effect J is dominated by the contribution from the

bulk (i), and so viscous-inviscid interaction maintains itself during the tongue development.

The governing equations (4.1a,b) for the vortex motion become

(-2 -- = U fl_,_, (4.19a)

(-1 _.0s/2)fi = -'--- It Is, (4.19b)

4For example, the nonlinear exponential growth in (4.3) can be seen to apply in principle to the full
system also, this growth then providing a match with our related work, Bennett, et al. (1988), Hall and

Smith (1989), Smith (1988b) on the long-scale vortex/wave interactions.
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subject to fi = _ = 0 at y = 0, 1, while the TS part satisfies [with _ =/_2]

k(z¢_/2 - G) = [c2,J +c3,(_ + + A_)]R + c4r(k2¢_)_//_ + c4_(/_ - R¢_) (4.19d)

and, again to leading order, J ~ (Ts - T)-_J(_), A_ ~ (_s- T)-I_(_) with

J ]01= gfidy. (4.19e)

The skin friction terms _3:e, however, are affected by the wall layers (ii) which are required

to reduce Ouf_ to zero at y = 0, 1. A solution of the terminal problem (4.19) may then be

sought in the separated-variables manner:

= uo(u)ud )].

Thus (4.19a,b) split into the ordinary differential equations

V_'= 2k_"-_', (-2V_ - _V_'/2) = k-'_"

U_, =- g-ff'V_, (-Ub - _,U_/2) = g-'Vb

(4.20a)

(4.20b)

(4.20c)

where U_, V_ are to vanish at y = 0, 1, the prime denote differentiation with respect to y or

as appropriate and k,g are constants. Equations (4.19c,d) remain intact here provided that

(J,_) is replaced by

/01(J_,)_)Ub(_.) with J, - gU_dy. (4.20d)

The solution for V_ is

V_ = k{ foY_2dy- y fol_2dy}, (4.21a)

from which U_ follows in (4.20c), giving J_ in (4.20d) equal to -ke/4200. In contrast, Vb, Ub

are given impficitly by

// /oVb=-2k-aS -_ z3[_"(z)dz, U_ =-2e-15- 4 zaV_(z)dz, (4.21b, c)

the origin of integration being zero to avoid an irregularity in general. Hence the terminal

response may be reduced in principle to the solution of a pair of integro-differential equations

for /_, ¢ (using t5 -_- /_:) as functions of 5 in the range -ec < _ < oc, by substitution of

(4.20d) - (4.21c) into (4.19c,d). Local expressions valid for small I_1 in the center of the

tongue can be written down and allow the solution to be symmetric there. In the other

extreme, at the edges of the tongue as _ _ :tzoc, the vortex and TS amplitudes tend to zero,

specifically in the form

k "_ RoZ -2 + R,z -4 "4-...,p "-' poZ, -4 -4- fll _-6 "4-..., (4.22a, b)
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_ 2Ggn]_. I + _a5 -2 +..., (4.22c)

Vb _ ao5 -4 + ax_ -6 +..., Ub "_ bo_.-2 + blz -4 +..., (4.22d, e)

consistent with the controlling equations above. Here Ro, R1, Po, Pl, _1, a0, al, b0, bl are con-

stants. The complete behavior in (4.22) then matches with the less pronounced flow outside

the tongue where the amplitudes 1,41, Iv(3)], lu(3)l and the phase ¢ are all 0(1) at 0(1) distances

from Z = Zs.

Thus the streak pattern of (4.18a-f) appears to provide a self-consistent terminal response

to the nonlinear interaction. The pattern is in fact another nominally exact solution of the

full system (4.1a-e), (4.2) if the TS linear-growth term c_ is neglected. A particular type of

this terminal form we note has the TS amplitude dominating, equivalent to [JI, ]X_I being

relatively small in (4.19c,d), in which case we find the solution

///_ exp(iq_) = d112c4 + _"exp(_2/4c4) exp(-_.2/4c4)d ?_] (4.22)
2

where dl,d2 are constants. This yields an acceptable tongue response, in agreement with

(4.21), since c4r is negative. A similar TS-dominated break-up can be proposed by suitable

adjustment of the algebraic forms in (4.18) as indicated earlier but that yields a weaker and

apparently less likely singularity. Extension of (4.22) to incorporate the vortex effect more

fully can be made by expanding about (4.22) or solving the entire terminal system in its

integro-differential form described above, analogous to the break-up features in (b).

The implications of items (e), (g) in particular are discussed in the next section.

5. REPERCUSSIONS, AND THE TYPE B INTERACTION

The main repercussion follows from the findings in (g) in the previous section and concerns

the next stage in the evolution of the typical vorticity tongue in the channel flow. This seems

to occur when the spanwise scale Izl of the streak reduces to 0(e-2), for the following reason.

The relative effect in the TS wave due to its slow growth and to the influence of the induced

vortex is of order e4 [see Section 2] but becomes accentuated like ]A_l[cx (Ts-T) -1)] typically

as the break-up takes control. In contrast, the relative effect from classical amplitude-cubed

contributions is smaller, of order c6, but proportional to IAI say, i.e. cx e6(Ts __)-2, as the

break- up is approached. Therefore the two effects become comparable when the scaled time

T- T_ decreases to 0(e2), corresponding to the z-scale of 0(e -2) on account of (g) above.

The next stage then, labelled Type b, has an increased vortex amplitude, with

(u,v,w) = (g, 0,0) + 0(¢2,¢7,¢ 5) (vortex) (5.1)
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in the core, an increased TS amplitude of the form

(u,p) = (e2At, 0)+ 0(¢3,¢ 5) (TS) (5.2)

in the two 0(J)-thick viscous wall layers, and buffer zones of width 0(¢) in which the skin

friction of the vortex flow is determined. The multiple scaling also alters from that in Section

2 to

(Ot, O=,O,) --* (e3OT + eSOT,, eOx, e2Oz,). (5.3)

Hence the effects of the vortex skin friction and momentum integral (cx J) compared with

those of the basic flow are 0(e2), interacting with the new slow-temporal and warping effects

in (5.3) and with the 0(e 2) amplitude-squared influence that the TS wave exerts in producing

the vortex motion. In addition, amplitude-cubed effects of relative size 0(e 2) now also enter

as a major new physical contribution in the reckoning of the TS amplitude itself. This

stage is sketched structurally in Figure 8 and merits further study, in particular to see if the

spanwise focusing observed in the nonlinear interaction Type a continues through the next

stage, Type b.

A similar inference holds if, in the spirit of item (e) in Section 4, we turn to consider

different starting conditions. As the effective amplitude I"-1 is increased the next distinct

stage encountered is exactly that of (5.1)-(5.3). Reduced warping in the input flow, on the

other hand, as in item (a), can lead to a much slower nonlinear-exponential evolution of the

interaction as time increases, more similar to that found in Hall and Smith (1987). This

slower evolution applies to the full system as well, as the footnote to item (g) mentions [see

also additional comments on initial conditions and by-pass processes in Smith, 1988b], and

tile exponential form links up with our related work (Bennett, et al., 1989), referred to more

fully in the next section.

6. NONLINEAR INTERACTION, TYPES C, D, E

The earlier sections have shown two related Types a,b of nonlinear interaction to be

possible. We turn now to the alternative vortex/wave interactions c,d,e which can arise from

different input conditions as follows.

First, we consider Types c,d, which emerge from the 3D interactive three-layer structure

based on the ¢-1 length scale in x (Smith, 1980). The flow solutions in the three layers have

the expansions

[dU, esV, dW, e4P] +, y = 1 - e2Y +,

tt, V, W, p] = [-ff+ e2A-ff', -cAx-ff, O(e4), O(e4)], y : 0(1),

[_2U, csV, c2W, ¢4p]-, y = c2y-,
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to the orders shown, with the unknown pressurespa: independent of Y+ in turn and now

(x, z) = e-l(X, Z), t = e-3T where again _ = Re-}. Hence the governing equations in the

two wall layers are the 3D unsteady interactive-boundary-layer equations,

[Ux+ vv + wz] = o,

[UT + UUx + VUy + WUz] + = -P)_(X,Z,T) + Uy_y,

[WT + UWx + VWv + WWz] _ = -Pz_(X,Z,T) + Wy_y

subject to no slip at Y+ = 0 and

U + '_ Y_: :T A(X, Z, T), W + _ O, as Y+ _ oo,

(6.2a)

(6.20

(6.2c)

(6.2d)

with -A representing the unknown core-flow displacement. The pressure-displacement law

necessary to close the system comes from the core-flow dynamics (c.f. Section 2), giving

P+- P- = IAxx (6.2e)

where again I = 1/30. The 3D fully nonlinear formulation (6.2a-e) is the counterpart of the

3D triple-deck formulation in boundary layers (see e.g., Hall and Smith, 1984, 1988) and in

general it requires a computational treatment (e.g., Smith, 1989), while a possibility for its

ultimate behavior is the finite-time singularity of Smith (1988a).

The emergence of vortex/TS nonlinear interaction from within the system (6.2) is ad-

dressed next, along the lines of the simultaneous work by Smith (1988b), although here

temporal rather than spatial evolution is of concern. An order-of-magnitude argument es-

tablishes the main possibilities. Thus, if the warping factor is fl(,_ Oz) then for an input

wave amplitude 0(h) the relative effects present, compared with 2D theory, are

B2, h2, h2fl2k-a,k, (6.3a z d)

due to warping, to the disturbance size, to the induced vortex-shear influence, and to the

slow temporal dependence (k) of the vortex, respectively. Here the third contributions stems

from the feature that the velocity W of the induced vortex for Y of order unity is 0(h2fl),

for either wall layer, and it remains at that level (apart from a logarithmic factor) in the

vortex-dominated outer zone or buffer which is induced where Y --, k-_ is large, for an

unsteady-viscous force balance in the vortex motion. In consequence, mass conservation

implies that the normal velocity V _ k-_ h2fl 2, and then the streamwise momentum balance

indicates that U ,v k-_h2fl 2. This therefore yields the shear effect in (6.3c). So significant

interaction can occur at low amplitudes (h) in either of the two cases

fl -,_ h, k ,',, h 2, h << 1 [Type c], (6.4)
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fl ,--, 1,k ,'-, h2, h << 1 [Type d]. (6.5)

Other special cases cannot be discounted but the Types c,d appear to be substantial ones.

The former, Type c, is summarized first below.

Type c's double structure (with Y ,_ 1 and Y ,_ h -1) and its solution expansions proceed

as guided by (6.4) and by comparison with Smith (1988b) and Hall and Smith (1989). The

nonlinear interaction produced is found after some working to be governed by the induced-

VV + Wr = 0, (6.6a)

U7+ V = UV-_, (6.6b)

W_+ _(IPI_)Y -2 = W_ (6.6c)

vortex equations

subject to

Uv_O , W --* 0 as Y --* cx_,

u ~ _aY, v --, o, w _ _(l_12){-enY + ¢} as Y --, o+,

(6.6d)

(6.6e)

coupled with the TS-wave equation

_z = {c, + c3(X+ + A;)}A + c4-X_+ csAIAI2 (6.6f)

for A(2,i). Here the coefficients in (6.6e,f) can be deduced from Sections 2-4 and Hall and

Smith (1984), P+ - P- = -a2IA from (6.2e), and the scalings behind this interaction are

given by

OT --* OT + h2_, Oz _ hO-e_, (6.7a)

(P,A) = (P,A)exp(iaX - i_T) + c.c. [wave], (6.7b)

(U, V, W) --_ (h-"Y q- hU, h3V, h3W), Y = h-ly [vortex], (6.7c)

while, again as before, A3(2,t) denotes the correction to the skin friction. The equations

(6.6a-e) apply at each wall (+). Lower-order logarithmic terms involved in (6.7c) have no

influence on the nonlinear interaction (6.6a-f). The solution properties would seem to be

analogous to those in Smith (1988b) and Section 4, implying that Type c can act as a

fore-runner to the full interactive-boundary-layer interaction (6.2a-e) or to Type d below.

The Type d nonlinear interaction in (6.5) is much stronger in the sense that it produces

0(1) effects, i.e., locally the mean flow is completely altered from the original PPF form,

despite the smallness of the input TS wave amplitude h. Here again the details are largely

as in Smith (1988b) (see also Hall and Smith, 1989), but modified for the temporal response,

and we find in summary the nonlinear interactive system

Vy + Wz = 0, (6.8a)
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with

U_ + VUy + WUz = Uv¢,

W_ + VWv + WWz = Wv-¢,

(6.8b)

(6.8c)

UV_I, W-*O, as Y_oo,

u~ _(z,_)Y,y _o,w-,-_-;2Oz{IPl:+,_ PzP_}, as Y 40+

(6.8d)

(6.8_)

for the vortex flow in the buffer zones, coupled with the TS-equation

Pzz - AsI Avz_'Pz - a2P = qzGA (6.9a)

for the pressures P± and displacements cx TA, near either wall (+). Here

._ = 3 _°Ai'° 1 -t- (6.9b)
2 + 2Aio Aio J '

,!

5Azo .1 2
G = (iaA.)_--,_0 = -,_ft(c_A.)-s, (6.9c, d)

and (6.2e) still relates P± and A. Also, the scalings

Y = h-lY, 01"-_ OT + h2_,

(P,A) _ h'(P,A)E + c.c. [wave], (6.10a -c)

(U, V, W) _ (h-'V, hV, h2W) [vortex]

have been applied above, with h' - h(-gnh)-}, while the wave depends on T through

the unknown frequency ft and wavenumber c_ (both real) in E -- exp(i(_X - iQT) but the

induced vortex motion is independent of the fast scale T. See further comments in Smith

(1988b). The major solution properties here are still unknown, c.f. the last-named paper,

although the weak linear case of secondary 3D instability for a 2D input TS wave can be

established readily, and brings in Squire-mode destabilization, as in that paper, while a

break-up singularity at finite time is a possibility in the full nonlinear system.

It is convenient now to reconsider the nonlinear interaction labelled Type b in Section

5. This arises as a distinct intermediate interaction between Types a,c. Thus, if the input

amplitude h is reduced to order e in the Type c interaction then formally, from (6.4), the

relative time dependence k slows to 0(e2), the spanwise dependence e/3 reduces to 0(e 2) and

the outer buffer-zone extent e2h -1 increases to 0(e). These suggested scales tie in exactly

with those inferred in Section 5 from the break-up of the Type a interaction. Thus, there is

a match between a,b and between b,c. The special character of Type b is described already

in Section 5 and here we add only that, unlike Type c, Type b has the vortex motion being

forced both internally and through the wall conditions by the TS amplitude.
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The final Type, e, to beconsideredneedsonly a brief mention, as it is the short-wave/long-

vortex nonlinear interaction of Bennett, et al. (1988), consisting of a TS wave of time scale

0(e -3) interacting with a vortex of the viscous time scale 0(e-7). Like Type d above, Type

e is a very strong interaction in which the mean flow itself is one of the unknown quantities

and is substantially changed from its original form. The main point of mentioning Type e

here is that there is a match between it and Type d, in fact, since a reduction of the input

amplitude h to order _2, in Type d, increases the vortex time scale e-lk 1 to _-7, in view of

(6.5), and simultaneously increases the buffer extent y ,-_ _2h-_ to 0(1), so that the vortex

flow occupies the entire channel. These and other features agree with the scalings for Type

e.

Further connections exist between the various nonlinear interactions a-e, as shown schemat-

ically in Figure 9, e.g., a match of a with e is possible as noted in an earlier section. In

addition, the early occurrence of each is dependent on the input amplitude (h) and span-

wise dependence or warping factor (o_ ¢3), whereas later occurrences of the interactions can

happen either as by-passes or as the consequences of a break-up in an earlier occurring type,

such as in Section 5 where Type b is set into action after the break-up of Type a.

7. FURTHER COMMENTS

As far as we are aware, the present theory is the first to show a mechanism for the

formation of tongues, or their initiation, during channel-flow transition, starting from an

input which is a near-2D TS wave. The mechanism involved in the Type a interaction say

is highly interactive (see Sections 2-4), between the warped TS wave and its induced longi-

tudinal vortex motion, and the interaction is found to be mutually reinforcing in the sense

that the vortex flow and the warping of the TS wave amplify together very strongly. This

is first through linear 3D secondary instability, but, beyond that, ultimately the nonlinear

interaction leads to the vorticity-tongue formation as described in (g) in Section 4. Weaker

warping can prevent the occurrence of such a tongue, we note, so that the present regime

is in some respects a threshold one. The response for Type a seems quite dependent on the

initial conditions even so and these could bring in extra, stronger, physical effects early on,

i.e. a different structural start to the interaction could be made. One example of this is

noted in Section 5, where Type a leads into Type b. Another is associated with the influence

of a mean vortex motion [u (a), v(a)], or small cross-flow, present initially, which could alter

the secondary instability properties of Section 4(b),(d) through the effects of the vortex's

mean skin friction and momentum integral, for instance. In general, during the current

stage for Type a, however, Figure 7 summarizes what happens physically as the tongue is

initiated. The vortex becomes concentrated and accentuated first at a certain spanwise lo-
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cation, along with the enhancement of the TS amplitude and phase there, compared with

the earlier slightly warped TS wave with weak vortex motion. In the vorticity formation, the

integrated momentum (o¢ J) of the induced vortex increases rapidly in magnitude, as does

its skin-friction factors, leading to an increasingly significant impact on the mean stream-

wise momentum and wall shears of the total flow. Most of these theoretical features may

tie in qualitatively at least with experimental and computational findings (see Section 1) on

spanwise focussing and eventual formation.

Further studies indicated by the present work include the next regime in the tongue

development (Section 5 and Figure 8), the effects of wall curvature, which may accentuate

the vortex flow, the influence of the additional inflexional instabilities which the tongue

behavior sets up, oblique TS waves and the application to boundary-layer transition (see

Hall and Smith, 1988, 1989, and Smith, 1988b). The same comments apply also to Types

b-e as well as to the 3D interactive-boundary-layer version in (6.2) which could be taken

as a further Type, f. These interactions are of various strengths, the strongest being Types

e,f. [Type c we note is equivalent to both cases I, II of Hall and Smith (1988c) and Type d

corresponds to case III in the same paper.] There may be other significant types also. We

tend to feel that it could be easy, and misleading perhaps, to miss many of the above types

in purely computational work or crude theories. Further, it is possible that the present work

may lead on eventually to provide insight into the structure of the so-called Lambda vortex

and other stronger features of transitional flows.
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^
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